Sn²⁺掺杂高 Gd₂O₃ 硼硅酸盐玻璃的辐照发光性能

蒋小波^{1,2}**, 邹雅^{1,2}, 韩帅^{2,3}, 王聪娟², 陈丹平²*, 杨秋红¹

1上海大学材料科学与工程学院,上海 200444;

²中国科学院上海光学精密机械研究所高功率激光单元技术实验室,上海 201800;

³中国科学院大学,北京 100049

摘要 在还原气氛下制备了 Sn²⁺掺杂 SiO₂-B₂O₃-Gd₂O₃-La₂O₃ 玻璃,并测试了该玻璃的密度、吸收光谱、光致发 光、荧光寿命和 X 射线激发下的辐照发光。研究结果表明,在 SiO₂-B₂O₃-La₂O₃ 玻璃系统中,随着 Sn²⁺浓度的增 大,紫外吸收截止波长红移,荧光强度先增大后因浓度淬灭而减小,在 Sn²⁺浓度为 0.3%时达到最大。随着 Gd₂O₃ 逐渐取代 La₂O₃,玻璃的密度增大,Sn²⁺的荧光寿命变短,但未发现 Gd³⁺对 Sn²⁺的敏化增强作用。在 X 射线激发 下,Sn²⁺的辐照发光强度随着 Gd₂O₃ 浓度的增大而增大,且不因 Gd³⁺浓度淬灭而减小,说明在 X 射线激发下, Gd³⁺和 Sn²⁺之间可能存在能量传递。

关键词 材料; Sn²⁺ 掺杂; 闪烁玻璃; 高 Gd₂O₃; 能量传递
 中图分类号 TQ171.1
 文献标识码 A

doi: 10.3788/AOS201838.0816002

Radioluminescence Properties of Sn²⁺-Doped Borosilicate Glass with High Gd₂O₃

Jiang Xiaobo^{1,2**}, Zou Ya^{1,2}, Han Shuai^{2,3}, Wang Congjuan²,

Chen Danping²*, Yang Qiuhong¹

¹ School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;

² Laboratory of High Power Laser Components, Shanghai Institute of Optics and Fine Mechanics,

Chinese Academy of Sciences, Shanghai 201800, China;

³ University of Chinese Academy of Sciences, Beijing 100049, China

Abstract The Sn^{2+} -doped SiO_2 -B₂O₃-Gd₂O₃-La₂O₃ glass is prepared in the reducing atmosphere and its density, absorption spectra, photoluminescence, fluorescence lifetime and radioluminescence excited by X-ray have been tested. The research results show that, in the SiO_2 -B₂O₃-La₂O₃ glass system, with the increase of Sn^{2+} concentration, the ultraviolet absorption cut-off wavelength is redshifted, and the photoluminescence intensity first increases and then decreases due to the concentration quenching effect, which reaches the maximum at Sn^{2+} concentration of 0.3 %. With the replacement of La₂O₃ by Gd₂O₃, the glass density increases and the fluorescence lifetime of Sn^{2+} gets shorter, but Gd³⁺ does not show the sensitizing enhancement effect on Sn^{2+} . Under the X-ray excitation, the radioluminescence intensity of Sn^{2+} increases with the increase of Gd₂O₃ concentration and does not decreases under the Gd³⁺ concentration quenching effect, which indicates that maybe there exists the energy transfer between Gd³⁺ and Sn²⁺ under the X-ray excitation.

Key words materials; Sn^{2+} doping; scintillation glass; high Gd_2O_3 ; energy transfer OCIS codes 160.2540; 160.3380; 160.2750

1引言

近年来,高能物理实验的发展对大型强子对撞 机的能量需求越来越高,这需要大量闪烁材料,因此 对闪烁材料的性能提出了更高的要求。具有成本低 廉、光学质量高、可实现批量、大尺寸生产等优点的 闪烁玻璃成为闪烁体领域研究的热点之一。目前研 究者们广泛研究了 $Ce^{3+[1-2]}$ 、 $Tb^{3+[3]}$ 、 $Pr^{3+[4]}$ 、 $Eu^{3+[5-6]}$ 、 $Eu^{2+[6-7]}$ 等离子在各种玻璃基质中的辐照 发光性能。其中, Tb^{3+} 、 Eu^{3+} 、 Pr^{3+} 等发光是基于f-f

收稿日期: 2018-02-07;修回日期: 2018-04-01;录用日期: 2018-04-09

^{*} E-mail: D-chen@mail.siom.ac.cn; ** E-mail: pubjob_jiang@163.com

能级跃迁,荧光寿命过长,故其不适合用作快闪材 料。而 Eu²⁺在氧化物玻璃中的价态难以控制,在辐 照发光时容易产生 Eu²⁺-Eu³⁺的能量转移,往往只 产生 Eu³⁺ 的发光^[8]。因此,具有纳秒级荧光寿命、 高光产额^[9]、较好的耐辐照性^[10]等优点的 Ce³⁺ 受 到了研究者们的广泛关注。但是,Ce³⁺掺杂的闪烁 玻璃存在低密度玻璃发光效率较高但高密度玻璃发 光效率很低的现象,这是由于 Ce3+存在电荷迁移淬 灭效应[11]。开发新的闪烁发光离子成为发展闪烁 玻璃的重要研究方向之一。拥有非常强的紫外-可 见发光^[12]、更高的丰度^[13]和更低价格的 Sn²⁺逐渐 被重视,已经有关于 Sn²⁺ 在磷酸盐^[14-15] 和硼酸 盐[15]玻璃中的光致发光和辐照发光的研究报道。 特别是在石英玻璃中, Sn²⁺的辐照发光强度已超过 锗酸铋(BGO)闪烁晶体的^[16],但该报道中所制备的 玻璃密度很小,限制了闪烁玻璃的应用范围。另外, Sn²⁺作为 s-p 能级跃迁的发光离子^[17],其发光是外 层电子间部分允许的迁移发光,发光特性受玻璃基 质的影响大,可产生超宽带发光,且荧光寿命可达数 纳秒^[18]。相比于稀土离子,关于 Sn²⁺ 等主族离子 在玻璃中的发光研究鲜有报道,尚需要进行大量的 实验研究,以探索它们在玻璃中发光性能的变化 规律。

参考稀土离子在闪烁玻璃中的作用并结合相关 文献报道^[14],Gd³⁺的能量传递作用可能增强Sn²⁺ 的光致发光乃至辐照发光效应。因此,本文首先在 SiO₂-B₂O₃-La₂O₃ 三元玻璃体系中单掺Sn²⁺,制备 一系列玻璃,并研究了其密度、吸收、荧光和辐照发 光性能。再用Gd₂O₃取代La₂O₃,探讨Gd₂O₃的 引入对玻璃的密度、吸收、荧光和辐照发光的影响, 以及 Gd3+和 Sn2+之间可能存在的能量传递机制。

2 实 验

实验中以 SiO₂-B₂O₃-Gd₂O₃-La₂O₃(Si-B)为基 质的玻璃的组成配比见表 $1, B_2 O_3 - Al_2 O_3 - La_2 O_3 (B-$ Sn)和 SiO₂-Al₂O₃-La₂O₃(Si-Sn)系统的玻璃的组 成配比见表 2,成分包含 SiO₂、B₂O₃、Al₂O₃、 La₂O₃、Gd₂O₃、SnO,其中 B₂O₃ 由 H₃BO₃ 引入, Al₂O₃ 由 Al(OH)₃ 引入,其余均由氧化物引入,原 料的质量分数均在99.9%以上。这三种基质玻璃分 别命名为 Si-B、B-Sn、Si-Sn。按表 1 和表 2 所列配 比称取混合物 20g,在玛瑙研钵内充分研磨混合后, 放入氧化铝坩埚中。为防止 Sn²⁺离子在熔制的过 程中被氧化成 Sn4+,采用套坩埚法^[9]获得 CO 还原 气氛。玻璃的熔融温度为 1400 ~ 1600 ℃, 保温 45 min后将熔体倒入预热至 400 ℃的不锈钢模具上 成型。接着立即放入温度为500℃的退火炉中保温 10 h,然后随炉冷却。将退火处理后的玻璃加工成 10 mm ×10 mm ×2 mm 两面抛光的样品,以供测试 使用。

采用 Archimedes 法测定玻璃样品的密度,利 用美国 Perkinelmer 公司生产的 Perkin Elmer Lambda950型分光光度仪测试吸收光谱,采用美国 Thermo Fisher 生产的 K-Alpha 型高性能 X 射线电 子能谱分析(XPS)仪进行光电子能谱分析,用英国 Edingburgh 公司的 FLS920型稳态/瞬态荧光光谱 仪测试荧光光谱和荧光寿命。以管电压 50 kV、管 电流 40 mA 的 Mo 靶为 X 射线激发源,配合北京卓 立汉光仪器有限公司生产的 SBP-300型荧光光谱 仪测试辐照发光强度。所有测试均在室温下进行。

Sample No. —						
	SiO_2	$B_2 O_3$	La_2O_3	$\operatorname{Gd}_2\operatorname{O}_3$	SnO	- Density $/(g \cdot cm^{\circ})$
Sn0	35	35	30	0	0	3.92
Sn1	35	35	30	0	0.1	3.94
Sn2	35	35	30	0	0.2	3.96
Sn3	35	35	30	0	0.3	3.97
Sn4	35	35	30	0	0.4	3.97
Sn-Gd0	35	35	30	0	0.3	3.97
Sn-Gd1	35	35	27.5	2.5	0.3	4.02
Sn-Gd2	35	35	22.5	7.5	0.3	4.13
Sn-Gd3	35	35	15	15	0.3	4.20
Sn-Gd4	35	35	0	30	0.3	4.33

表 1 Si-B 玻璃的组分和密度 Table 1 Compositions and density of Si-B glass

表 2 B-Sn 和 Si-Sn 玻璃的组分 Table 2 Compositions of B-Sn and Si-Sn glasses

Same la Ma	Mole fraction / %						
Sample No. –	$B_2 O_3$	Si_2O_3	$\mathrm{Al}_2\mathrm{O}_3$	La_2O_3	SnO		
B-Sn1	70	0	10	20	0.1		
B-Sn2	70	0	10	20	0.2		
B-Sn3	70	0	10	20	0.3		
B-Sn4	70	0	10	20	0.4		
Si-Sn1	0	50	20	30	0.1		
Si-Sn2	0	50	20	30	0.2		
Si-Sn3	0	50	20	30	0.3		
Si-Sn4	0	50	20	30	0.4		

3 结果与讨论

3.1 玻璃样品密度

Si-B 玻璃样品的密度见表 1。高密度的玻璃有 利于高能射线的吸收,从而提高其辐射硬度。从表 1 可以看出,随着 SnO 含量的增大,玻璃样品的密度 变化不大,均在 4.0 g/cm³ 左右。用 Gd₂O₃ 逐步取 代 La₂O₃ 时,玻璃的密度逐渐增大,当 Gd₂O₃ 的摩 尔分数为 30%时,玻璃的密度达到 4.33 g/cm³。

3.2 吸收光谱

图 1(a) 所示为未掺 Sn²⁺ 和不同 Sn²⁺ 掺杂浓度 的 Si-B 玻璃样品的吸收光谱。可以看出,所有玻璃 样品在可见光范围内均具有良好的透过性。相比于 未掺 SnO 的玻璃样品,掺杂 SnO 玻璃的紫外吸收 截止波长出现了明显的红移,这是由 Sn²⁺离子的 s²、sp轨道间的跃迁^[16]引起的。从图 1(a)还可以看 出,玻璃样品的紫外吸收截止波长随着 Sn²⁺浓度的 增大向长波方向发生移动,其可能的原因是:1) Sn²⁺离子很容易受到周边配位场的影响,随着 SnO 含量的增加,玻璃的光碱度增大,Sn²⁺周边的配位 场强度变大,Sn²⁺离子的 s²、sp 轨道间的能级间隔 变小,电子更容易从 s² 轨道跃迁到 sp 轨道上;2)随 着 SnO 掺杂浓度的增加,样品中 Sn4+ 的绝对浓度 也相应增大。图 1(b)所示为不同 Gd₂O₃ 含量的 Si-B玻璃样品的吸收光谱,可以看出,随着 Gd₂O₃ 含 量的增加,玻璃样品的紫外吸收截止波长并未明显 移动。这是由于 Gd³⁺ 和 La³⁺ 同属于镧系元素, 拥 有相似的物理和化学性质。在 Gd₂O₃ 逐步取代 La₂O₃的过程中,玻璃样品的光碱度并没有发生大 的变化[9]。

图 1(c) 所示为 CO 还原气氛下和空气气氛下分 别制备的 Sn1 的 XPS 光谱, 插图为参考样品 SnO 和 SnO₂ 的 XPS 光谱, 可以看出, 相比于 CO 还原气 氛下的 Sn1,空气气氛下制备的 Sn1 玻璃样品的峰 位向高结合能方向(SnO₂)发生移动,表明在空气气 氛下,玻璃样品中 Sn⁴⁺的含量增大,Sn²⁺含量相应 减小,即还原气氛有利于玻璃中的 Sn⁴⁺向 Sn²⁺转 化。图 1(d)所示为 CO 还原气氛和空气气氛下制 备的 Sn1 玻璃样品的吸收光谱,可以看出,相比于 CO 还原气氛下的 Sn1,空气气氛下制备的 Sn1 玻璃 的紫外吸收截止波长出现了明显的红移。故 Sn⁴⁺ 含量的增大会导致玻璃样品的紫外吸收截止波长向 长波方向移动。

3.3 荧光光谱

图 2(a) 所示为未掺 Sn²⁺ 和不同 Sn²⁺ 掺杂浓度 的 Si-B 玻璃样品在检测波长为 409 nm 下的激发光 谱。可以看出,相比于未掺 Sn²⁺的样品,掺杂 Sn²⁺ 的玻璃样品有超过 100 nm 的激发光谱(235~ 350 nm),及两个分别位于 252 nm 和 284 nm 处的 激发峰,对应于 Sn²⁺离子¹S₀→¹P₁的跃迁^[16]。从 图 2(a)还可以看出,随着 Sn²⁺含量的增加,激发峰 强度也逐渐增大,直至摩尔分数为0.3%时达到最 大,随后由于 Sn²⁺离子的浓度淬灭,强度下降。同 时也可以看出,激发峰的波长随着 Sn²⁺含量的增加 逐渐发生红移,这可以用紫外吸收截止波长随 Sn²⁺ 浓度的增大发生红移进行解释。图 2(a)插图所示 为 CO 还原气氛和空气气氛下制备的 Sn1 在检测波 长为 409 nm 下的激发光谱,可以看出空气气氛制 备下的 Sn1 的激发峰强度大约只有还原气氛制备 下的 Sn1 的 1/10,且激发峰波长出现了明显的 红移。

图 2(b) 所示为 252 nm 紫外光激发下未掺 Sn²⁺和掺杂不同浓度 Sn²⁺的 Si-B 玻璃样品的发射 光谱,可以看出,相比于未掺杂 Sn²⁺的玻璃样品,掺 杂 Sn²⁺的玻璃样品有非常宽的发射谱,其中心波长 位于 409 nm 处,对应于 Sn²⁺的³P₁→¹S₀跃迁^[16];且

图 1 吸收光谱和 XPS 光谱。(a)未掺 Sn²⁺和不同 Sn²⁺掺杂浓度的 Si-B 玻璃样品的吸收光谱;(b)不同 Gd₂O₃ 含量的 Si-B 玻璃样品的吸收光谱;(c) CO 还原气氛和空气气氛下制备的 Sn1 的 XPS 光谱; (d) CO 还原气氛和空气气氛下制备的 Sn1 的吸收光谱

Fig. 1 Absorption spectra and XPS spectra. (a) Absorption spectra of un-doped Si-B glass and Si-B glasses doped with different Sn²⁺ concentrations; (b) absorption spectra of Si-B glasses with different Gd₂O₃ concentrations; (c) XPS spectra of Sn1 prepared in CO and air atmospheres; (d) absorption spectra of Sn1 prepared in CO and air atmospheres

图 2 未掺 Sn²⁺和不同 Sn²⁺掺杂浓度的 Si-B 玻璃样品激发光谱和发射光谱。 (a)在检测波长为 409 nm 时的激发光谱;(b)在激发波长 252 nm 时的发射光谱

Fig. 2 Excitation spectra and emission spectra of un-doped Si-B glass and Si-B glasses doped with different Sn²⁺ concentrations. (a) Excitation spectra at detection wavelength of 409 nm;

(b) emission spectra at excitation wavelength of 252 nm

Sn²⁺的发光强度随着 Sn²⁺浓度的增加而增大,但当 其摩尔分数大于 0.3%时,玻璃样品的发光强度随着 Sn²⁺浓度的增加而减小。图 2(b)插图所示为在 CO 还原气氛和空气气氛下制备的 Sn1 在激发波长为 252 nm 时的发射光谱,可以看出,还原气氛下制备 的 Sn1 的发射峰强度大约为空气气氛下制备的 Sn1 的 10 倍。

图 3(a)所示为不同 Gd₂O₃ 含量的 Si-B 玻璃样 品在检测波长为 409 nm 时的激发光谱,可以看出, 所有的玻璃样品均有非常宽的激发光谱(235~ 350 nm),两个激发峰大约位于 252 nm 和 284 nm, 对应于 Sn²⁺ 的¹S₀ \rightarrow ¹P₁ 跃迁^[16]。在磷酸盐基质 中,Gd³⁺ 的特征激发峰(275 nm)对 Sn²⁺ 的蓝光发 射有极大的促进作用^[14]。但从图 3(a)可以看出,在 硼硅酸盐体系中,随着 Gd₂O₃ 含量的增加,玻璃样 品的 Sn²⁺激发强度并不随着 Gd³⁺离子浓度的增加 而增大,也观察不到 Gd³⁺ 的特征激发峰(275 nm) 对 Sn²⁺发光的影响。310 nm 波长处随着 Gd₂O₃ 含 量增加而逐渐凹陷的波谷是 Gd³⁺ 的吸收引起的^[19]。

图 3(b)所示为不同 Gd₂O₃ 含量的 Si-B 玻璃样 品在 Gd³⁺ 特征激发波长 275 nm 下的发射光谱,可 以看出,每个样品有两个发射峰,位置分别位于 313 nm和 450 nm 处。313 nm 处的峰是由 Gd³⁺ 的⁶P_{7/2}→⁸S_{7/2}跃迁引起的^[19],450 nm 处的峰是由 Sn²⁺的³P₁→¹S₀跃迁引起的^[16]。从图 3(b)还可以 看出,随着 Gd₂O₃ 的增多,Gd³⁺在 313 nm 处的发 射峰强度先增大后减小,但是在 450 nm 处的发射 峰强度却几乎没有变化。结合图 3(a)中不同 Gd₂O₃ 含量的玻璃样品在检测波长为 409 nm 时的 激发光谱,可以发现,不同于磷酸盐体系[14],由于 Sn²⁺和 Gd³⁺之间的能量传递,Gd³⁺能促进 Sn²⁺的 蓝光发射;在硼硅酸盐体系中,Gd3+对 Sn2+的光致 发光没有相应的促进作用。分析认为,相比于磷酸 盐体系,硼硅酸盐容易产生富硼相和富硅相的两相 分离,硼硅外的其他离子有分布在富硼相、富硅相和 相界面三种可能。通常情况下,大多数离子都处于 富硼相,而部分低价态离子有可能处于界面或者富 硅相^[20]。因此,Sn²⁺和Gd³⁺之间不产生能量传递 的原因可能是硼硅基质玻璃的分相导致的,Gd³⁺和 Sn²⁺分别处在不同的相中,二者之间的距离增大, 故不能进行有效的能量传输。玻璃样品在 275 nm 激发下的发射峰处在 450 nm 处而不是 409 nm 处, 这可能是主族元素离子发光的一个特点,即发射峰 位随激发波长的变化而发生变化^[21]。图 3(b)插图

所示为 Sn3 玻璃样品在激发波长为 252 nm 和 290 nm(Sn3 在检测波长为 409 nm 时的另一个特 征激发波长)时的发射光谱,可以看出,相比 252 nm 激发下的发射峰波长,玻璃样品在 290 nm 激发下 的发射峰波长向长波方向移动了约 29 nm。

图 3 不同 Gd₂O₃ 含量的 Si-B 玻璃样品的激发光谱和 发射光谱。(a)在检测波长为 409 nm 时的激发光谱; (b)在激发波长为 275 nm 时的发射光谱

Fig. 3 Excitation spectra and emission spectra of Si-B glasses with different $Gd_2 O_3$ concentrations.

(a) Excitation spectra at detection wavelength of 409 $\rm nm\,;$

(b) emission spectra at excitation wavelength of $275~\mathrm{nm}$

图 4(a)、(b)、(c)所示分别为不同 Sn²⁺掺杂浓 度的 Si-B、B-Sn、Si-Sn 玻璃的吸收光谱,可以看出, 三种玻璃的紫外吸收截止波长均与 Sn²⁺的浓度呈 正相关。图 4(d)所示为不同 Sn²⁺掺杂浓度的 Si-B、 B-Sn 和 Si-Sn 玻璃对应的紫外吸收截止波长,可以 看出,当掺杂相同浓度的 Sn²⁺时,Si-B 玻璃的紫外 吸收截止波长处在 Si-Sn 和 B-Sn 玻璃的之间,这也 许反映了 Si-B 玻璃的 Sn²⁺浓度处在 Si-Sn 和 B-Sn 玻璃的之间^[22]。故 Sn²⁺对所进入的相有一定的选 择性,在 Si-B 玻璃中,Sn²⁺有可能更易存在于界面 中,而 Gd³⁺有可能与富硼相结合比较紧密,从而导 致 Sn²⁺和 Gd³⁺的距离较远,难以产生有效的能量 传递。

3.4 荧光寿命

图 5 所示为 Si-B 玻璃样品在 252 nm 激发下 409 nm 处的荧光衰减曲线,所有样品的衰减曲线均

图 4 不同 Sn²⁺掺杂浓度的玻璃样品的吸收光谱和紫外吸收 截止波长。(a) Si-B 玻璃的吸收光谱;(b) B-Sn 玻璃的吸收 光谱;(c)不 Si-Sn 玻璃的吸收光谱;

(d) Si-B、B-Sn、Si-Sn 玻璃的紫外吸收截止波长

Fig. 4 Absorption spectra and ultraviolet absorption cut-off wavelengths of glass samples doped with different Sn²⁺ concentrations. (a) Absorption spectra of Si-B glass;
(b) absorption spectra of B-Sn glass; (c) absorption spectra of Si-Sn glass; (d) ultraviolet absorption cut-off wavelength of Si-B, B-Sn and Si-Sn glasses

能用单指数曲线拟合得到。可以看出,所有的样品 均具有较短的荧光寿命(小于 5 μs),只有石英玻璃 荧光寿命的一半^[16],且随着 Sn²⁺浓度的增加,荧光 寿命基本不变;而随着 Gd₂O₃浓度的增加,样品的 荧光寿命具有逐渐变短的趋势。通过调节玻璃组 成,还有可能将其荧光寿命进一步缩短至纳秒 量级^[18]。

3.5 X射线激发的辐照光谱

图 6(a)所示为未掺 Sn^{2+} 和不同 Sn^{2+} 掺杂浓度 的 Si-B 玻璃样品在 X 射线激发下的辐照发光光谱。 可以看出,在 X 射线激发下, Sn^{2+} 的发射峰位于 409 nm,与紫外光激发下的光谱类似,对应于 Sn^{2+} 的³P₁→¹S₀跃迁^[16]。另外,随着 Sn^{2+} 离子浓度的增 加,其发射强度的变化趋势与光致发光的也一致,先 增大后因 Sn^{2+} 浓度淬灭而减小,在 SnO 的摩尔分 数为 0.3%时达到最大。

图 6(b)所示为不同 Gd₂O₃ 含量的 Si-B 玻璃样 品在 X 射线激发下的辐照发光光谱,插图为不同 Gd₂O₃ 含量的 Si-B 玻璃样品的光谱积分强度相对 于 BGO 晶体积分强度的百分比(*F*),可以看到,该 辐照发光光谱在 315 nm 和 409 nm 处有两个发射 峰,分别来源于 Gd³⁺ 的⁶ P_{7/2} →⁸ S_{7/2}^[19]和 Sn²⁺ 的 ³P₁→¹S₀^[16]跃迁。随着 Gd₂O₃ 的增多,Gd³⁺所对 应的 315 nm 处的发射峰强度呈现先增大后减小的

图 5 不同样品的荧光衰减曲线。(a)不同 Sn²⁺浓度 掺杂的 Si-B 玻璃;(b)不同 Gd₂O₃ 浓度的 Si-B 玻璃 Fig. 5 Luminescence decay curves for different samples. (a) Si-B glasses doped with different Sn²⁺ concentrations; (b) Si-B glasses with different Gd₂O₃ concentrations

趋势,当Gd³⁺摩尔分数在7.5%时达到最大。但是, 在 X 射线的激发下,不同于光致发光,Sn²⁺离子在 409 nm处的特征发射峰强度随着 Gd³⁺浓度的增加 不断增大,光谱积分强度也从相当于 BGO 晶体的 22%增大到 84%,并且不随着 Gd3+发射峰强度的 减小而减小。光致发光时,活性离子在玻璃中的最 佳浓度与辐照发光的最佳浓度存在不一致的情 况^[19,23],但是这里的差异更加明显。产生这种现象 可能有以下三个原因。1)光致发光和辐照发光有不 同的发光机理[24]。光致发光过程中,激发光子直接 作用于 Sn²⁺ 和 Gd³⁺,被 Sn²⁺ 和 Gd³⁺ 吸收从而发出 荧光。而X射线激发则是基质吸收高能离子的能 量,产生相应的电子空穴对,然后一部分电子空穴对 将能量传递给发光中心并且产生大量的二次电子, 最后二次电子通过直接或者间接的方式激发 Gd³⁺ 和 Sn²⁺ 发出荧光,这种能量传递方式有更长的作用 距离,有利于二者之间的能量传递。2)Gd³⁺和Sn²⁺ 之间存在深能级的能量传递过程。图 7 所示为 Gd³⁺和 Sn²⁺的能级图^[25],其中 H、F、G、D、I、P 是 Gd³⁺的上能级。可以看出,Gd³⁺具有非常丰富的能 级,在X射线的激发下,可能有比275 nm 更深的能 级得到了激发,产生跃迁并将能量传递给了 Sn²⁺,

从而使 Sn²⁺的发光得到增强。3)Gd³⁺的引入一方 面增大了玻璃的密度,提高了玻璃样品对 X 射线的 吸收能力;另一方面 Gd³⁺作为玻璃形成体,有利于 降低玻璃中的非桥氧含量,使能量得到更好的传递。 非桥氧可以和 X 射线激发出的电子空穴对中的空 穴发生复合,使得 X 射线激发的能量传递给非桥 氧,产生热振动和缺陷,从而终止能量的传递,导致 闪烁发光强度下降甚至消失。这些解释还需要进一 步设计实验来证实。综上所述,根据光致发光来判 断闪烁发光性能有可能不可靠。

Fig. 6 Radioluminescence spectra for different samples.
(a) Un-doped Si-B glass and Si-B glasses doped with different Sn²⁺ concentrations; (b) Si-B glasses with

different Gd₂O₃ concentrations

4 结 论

在 CO 还原气氛下制备了一系列 SiO₂-B₂O₃-Gd₂O₃-La₂O₃ 体系的玻璃,结果表明,用 Gd₂O₃ 逐 步替代 La₂O₃ 有利于增大玻璃密度。所有玻璃均 在可见光范围内有较高的透过率。在没有引入 Gd₂O₃ 时,玻璃样品在 252 nm 紫外光的激发下,由 于 Sn²⁺的浓度淬灭效应,Sn²⁺的摩尔分数为 0.3% 时发光达到最强。当逐步用 Gd₂O₃ 替代 La₂O₃ 时, Sn²⁺有可能更易存在界面中,而 Gd³⁺有可能与硼

相结合比较紧密,导致 Sn²⁺和 Gd³⁺的距离较远,难 以产生有效的能量传递,从而使得 Sn²⁺的光致发光 强度随着 Gd₂O₃的增多而几乎不变。在 X 射线的 激发下,辐照发光和光致发光的作用机理不同, Gd³⁺和 Sn²⁺之间可能存在深能级的能量传递, Gd³⁺的引入有利于减少非桥氧含量进而减少电子 空穴对中空穴的消耗,增大了能量传输的距离,从而 使 Sn²⁺的辐照发光强度随着 Gd³⁺的增多而增强, 光谱积分强度从相当于 BGO 晶体的 22%增大到 84%,并且不随着 Gd³⁺的浓度淬灭而淬灭。Sn²⁺在 高钆玻璃中的高辐照发光效率,及其光致发光和辐 照发光最佳组成的不一致性为探索高性能的闪烁玻 璃开辟了新的研究方向。

参考文献

- Zaman F, Rooh G, Srisittipokakun N, et al. Scintillation and luminescence characteristics of Ce³⁺ doped in Li₂O-Gd₂O₃-BaO-B₂O₃ scintillating glasses[J]. Radiation Physics and Chemistry, 2017, 130: 158-163.
- [2] Shen C, Yan Q, Xu Y, et al. Luminescence behaviors of Ce³⁺ ions in chalcohalide glasses[J]. Journal of the American Ceramic Society, 2010, 93(3): 614-617.
- [3] Sun X Y, Huang S M. Tb³⁺-activated SiO₂-Al₂O₃-CaO-CaF₂ oxyfluoride scintillating glass ceramics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 621(1): 322-325.
- [4] Zhang Y, Huang F F, Liu L W, et al. Spectroscopics investigation of Pr³⁺ doped fluoride glasses [J]. Acta Optica Sinica, 2015, 35 (8):

0816004.

张瑜,黄飞飞,刘力挽,等.掺 Pr³⁺氟化物玻璃发光 特性研究[J].光学学报,2015,35(8):0816004.

- [5] Fu J, Kobayashi M, Sugimoto S, et al. Eu³⁺activated heavy scintillating glasses[J]. Materials Research Bulletin, 2008, 43(6): 1502-1508.
- [6] Tang C M, Shen Y L, Sheng Q C, et al. Fluorescence and scintillation properties of Eu-doped glass with high Gd[J]. Acta Physica Sinica, 2013, 62(24): 247804. 唐春梅, 沈应龙, 盛秋春, 等. Eu 掺杂的高 Gd 玻璃

荧光及闪烁发光性能研究[J].物理学报,2013, 62(24):247804.

- [7] Chewpraditkul W, Chen D, Yu B, et al. Luminescence and scintillation of Eu²⁺-doped high silica glass[J]. Rapid Research Letters, 2011, 5(1): 40-42.
- [8] Liu S, Zhao G, Ruan W, et al. Reduction of Eu³⁺ to Eu²⁺ in aluminoborosilicate glasses prepared in air[J]. Journal of the American Ceramic Society, 2008, 91(8): 2740-2742.
- [9] Liu L W, Shao C Y, Zhang Y, et al. Research on scintillation properties of Ce³⁺-doped aluminosilicate oxyfluoride glass[J]. Acta Optica Sinica, 2015, 35(12): 1216002.
 刘力挽, 邵冲云, 张瑜, 等. Ce³⁺ 掺杂氟氧铝硅酸盐 玻璃闪烁性能的研究[J]. 光学学报, 2015, 35(12): 1216002.
- [10] Xia F, Zhao D H, Rao J H, et al. Radiation induced effect of transmission spectra of Ce³⁺ doped heavy metal germanate glass[J]. Journal of Functional Materials, 2004, 35(zl): 452-454.
 夏方,赵东辉,饶金华,等. Ce³⁺掺杂重金属锗酸盐 玻璃透射光谱的辐射诱导效应[J].功能材料, 2004, 35(zl): 452-454.
- [11] Liu L W, Zhou Q L, Shao C Y, et al. Scintillation properties of Ce³⁺-doped SiO₂-Al₂O₃-Gd₂O₃ glasses[J]. Acta Physica Sinica, 2015, 64 (16): 167802.
 刘力挽,周秦岭,邵冲云,等. Ce³⁺ 掺杂 SiO₂-Al₂O₃-Gd₂O₃ 玻璃的闪烁性能[J].物理学报, 2015, 64(16): 167802.
- [12] Chen D, Miyoshi H, Akai T, et al. Colorless transparent fluorescence material: Sintered porous glass containing rare-earth and transition-metal ions[J]. Applied Physics Letters, 2005, 86 (23): 231908.
- [13] Jimenze J A. Luminescent tin-doped phosphate glasses activated by carbon [J]. Materials Research Bulletin, 2017, 88: 131-135.
- [14] Tong Y, Yan Z, Zeng H, et al. Enhanced blue

emission of SnO₂ doped phosphate glasses by Gd_2O_3 co-doping [J]. Journal of Luminescence, 2014, 145(1): 438-442.

- [15] Masai H, Yanagida T, Fujimoto Y, et al. Scintillation property of rare earth-free SnO-doped oxide glass [J]. Applied Physics Letters, 2012, 101(19): 191906.
- Yang K, Zheng S, Jiang X, et al. Luminescence and scintillation of high silica glass containing SnO[J]. Materials Letters, 2017, 204: 5-7.
- [17] Masai H, Yanagida T, Fujimoto Y, et al. Scintillation property of rare earth-free SnO-doped oxide glass[J]. Applied Physics Letters, 2012, 101(19): 191906.
- [18] Wang Y, Yue Y, Zou Y, et al. Broadband visible luminescence in tin fluorophosphate glass with ultralow transition tempaerature[J]. RSC Advances, 2018, 8(9): 4921-4927.
- [19] Tang C, Liu S, Liu L, et al. Luminescence properties of Gd³⁺-doped borosilicate scintillating glass[J]. Journal of Luminescence, 2015, 160: 317-320.
- [20] Chen D, Masui H, Miyoshi H, et al. Extraction of heavy metal ions from waste colored glass through phase separation [J]. Waste Management, 2006, 26(9): 1017-1023.
- [21] Xu B B. Design, preparation and optical properties of Bi-doped super-broadband near-infrared luminescent materials[D]. Hangzhou: Zhejiang University, 2014:63-68.
 许贝贝.Bi掺杂超宽带近红外发光材料的设计,制备 和光学性质研究[D].杭州:浙江大学,2014:63-68.
- [22] Chen D, Masui H, Akai T, et al. Decoloration of waste colored glass through phase-separation and its mechanism [J]. Journal of the Australian Ceramic Society, 2002, 38(2): 130-134.
- [23] Shen Y L. Luminescence and scintillation properties of low-valence rare-earth ions doped in glass[D].
 Beijing: University of Chinese Academy of Sciences, 2013: 43-51.
 沈应龙.低价态稀土离子在玻璃中的荧光和闪烁性

能研究[D]. 北京:中国科学院大学, 2013: 43-51.

- [24] Huang L, Jia S, Li Y, et al. Enhanced emissions in Tb³⁺-doped oxyfluoride scintillating glass ceramics containing BaF₂ nanocrystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 788: 111-115.
- [25] Wegh R T, Meijerink A, Lamminm Ki R J, et al. Extending Dieke's diagram[J]. Journal of Luminescence, 2000, 87/88/89: 1002-1004.